What 3D Printer Nozzle Size Should I Use? - The Pros and Cons...

When browsing for your last printer, nozzle size may well have been the last thing on your mind. It’s an often overlooked detail. Depending on what you need to print; the wrong setup could be holding you back.

Let’s take a look at the options, and why you might need to explore different nozzles for your 3D Printer.

 

How does the nozzle size affect prints?

If you 3D print for business (or doing large quantities of very similar prints) you’ll want to make sure your extruder is laying down the right amount. Not too much (as you could be using more filament than necessary) and not too little (as your print times could be longer than they need to be).

Or perhaps you print various models, some very detailed and intricate, and some more practical prints (like a replacement door knob for example) that just need to be printed quickly, and for maximum strength.

Either way, you’re going to need the right setup for you so you’re not wasting your time, wasting filament or just coming out with an undesirable print quality. You can treat this guide as a sort of 3d printer nozzle size comparison.

Depending on your 3D printer, various nozzles can be interchanged reasonably easily (most are screw fit) and multipacks (with different sizes in) can be picked up quite cheaply.

 

Let’s look at the various nozzle size 3D printer options commonly available:

The most common extruding diameter is the 0.4mm (or 0.35mm) nozzle used by most current 3D printer manufactures currently available. The reason for this, quite simply is that’s it’s a great all-rounder nozzle size. This means you can print exceptional detail, and it won’t take forever.

That's because you can print down to layer heights of just 0.1mm, or up to 0.3mm using a 0.4mm nozzle. The thinner the layer height, the better the detail (on the Z axis) and the thicker the layer height the fast your print will be, but with less detail.

This is more often than not, for most print jobs the best nozzle size for your 3d printer. 

Well, maybe some prints take forever – but at least it’s an acceptable amount of time. A common misconception is that if someone isn’t getting good enough print quality from their printer running a 0.4mm nozzle, they immediately think they need a smaller nozzle size.

 

Standard 0.4mm Nozzle Printing at 0.2mm Layer Height

This is Zortrax M200 printing our ABS with the stock 0.4mm Nozzle and 0.2mm Layer Height

 

Another common smaller size is 0.25mm. Some printers are now offering 0.2mm, 0.15mm and Mass Portal are even experimenting with 0.1mm nozzles. These create some incredible results for FDM machines, they managed to print the inner workings of a watch in excellent detail.  

Now in theory, smaller nozzles do allow you to achieve better precision. But for a lot of printers, especially lower priced or older models – a smaller sized nozzle isn’t necessarily going to make a difference unless your printer supports the higher resolution necessary. It might be like putting low profile, performance tires on a stock Ford Anglia – it won’t make it go any faster or necessarily handle the corners better.

Fine Nozzle Size

It’s similar to how 3d printer specifications on paper (such as advertised resolution) won’t always translate to better print quality on the finished article. Similar to how Ultimaker and Zortrax have very similar resolutions on paper, but in our unbiased opinion our Zortrax creates better quality prints than our Ultimaker 2 does – for example.

 

Mass Portal 0.1mm Nozzle Size

Close-up shot of an FDM print with a 0.1mm nozzle - Mass Portal. If you were wondering how small can a 3d printer print, then this will give you a good idea.

 

If you bought your 3d printer recently though, it’s likely you’re going to be able to benefit from a smaller nozzle size as the resolution across the board is getting really good. Let’s take a look at the pros and cons to printing with smaller nozzle sizes. Some are less obvious than others. Then we’ll take a look at the under rated larger nozzles available. Hopefully once you’ve finished this article you’ll be able to answer that “What nozzle size should I print with?” that you’ve likely been loosing so much sleep over.

You’ve likely guessed already that the smaller the nozzle in your extruder, in theory the higher detail you can print. This is great for those intricate prints, or if you need to print very thin walls for aircraft skin, or high transparency prints and similar reasons for example.

This photo of a ‘printed model plane skin was done in one layer thick on a regular 0.4mm nozzle. If we’d done it on a 0.2mm nozzle the weight (and strength) of the skin would be halved.

Spitfire Wing 1 Layer Thick

 

It’s worth noting though that a 0.2mm nozzle 3d printer does not extrude half the amount of filament that a 0.4mm nozzle does. Oh no, thanks to Area that means that halving the diameter actually means you’re looking at extruding just 25% of filament in an 0.2mm nozzle compared with a standard 0.4mm.

That could, if all other things being equal increase printing time by a large margin. In real terms though, it’s likely to increase by about two times longer, as you’ll usually use less filament as you print thinner wall thicknesses and thinner infill supports. So bear that in mind if you need really strong parts; high detail and strength can only both be achieved if you’re willing to wait a long time…

Basically the smaller the nozzle size, the higher you increase your chances of 3d printer problems. Especially if you're using cheap filament - it might work fine with lower detail, thick nozzles, but if you want specialist prints with small nozzles, it's key to using pure, high quality filaments. 

Other factors when printing with thin diameter nozzles are less obvious – like it’s harder to print with overhangs. This is because each layer has less width for the next layer to purchase on as your traverse an overhang for example. Bridging is also more challenging.

But there’s good news! Where overhangs are a little more tricky with a thinner nozzle, the supports are actually much easier to remove. Because of the additional precision, your slicer can use the minimum filament necessary between your model and the supports, so they’ll break away more easily – and have less broken contact area that needs sanding.

Once last point, that really is the elephant in the room is the ease with which very thin nozzles are clogged. If you get down to 0.2mm or even 0.1mm sizes, you only need a small particle to clog the hotend. We’re not trying to plug our own product here (well, maybe a little) but it’s increasingly important to print with excellent quality filament the thinner you go. No contaminants in your filament, and clean out the nozzle sufficiently and regularly and you’ll turn an otherwise problematic printing experiment into a reliable endeavor.

Before we consider wider 3d printer nozzle diameters, it’s worth taking a moment to understand the relationship between nozzle size and layer thickness. In short, the former dictates horizontal details (along the x and y axis) and the latter controls the resolution on the vertical, or z axis.

 

Layer Height and Bed Adhesion

They are related but not completely independent from each other. For example it is possible to print a thinner nozzle with a thicker layer height if vertical resolution is less important to you, and a thicker nozzle with very thin layer heights for visa versa priorities – but if you take this route to the extremes it will cause problems.

Here's our explanation for the best 3d printer layer height combo.

 

 

What's The Max Layer Height vs Nozzle Size?

You don't necessarily need a 3D printer layer height calculator, but a general rule of thumb is your max layer height is 50% the width of your nozzle. In some instances you can go higher (maybe 75%) but you may sacrifice reliability.

It's best to experiment with the parameters of your print, as long as you understand the relationship between 3D printer nozzle size vs layer height you'll be on track. 

So for a 0.4mm nozzle, you'll be looking to print at 0.2mm layer height, or up to 0.3mm. You minimum would want to be around 0.1mm, any lower than this and you're just increasing your waiting time for not much benefit (on the same 0.4mm size nozzle). 

Just don't forget to adjust filament flow rate or extrusion pressure to compensate for any layer height vs nozzle size changes. Though most updated slicers should do this for you automatically. 

 

Layer Height And Pressure

Here's our mini guide on explaining the close relationship between nozzle size, layer height and pressure. 

 

For most cases we recommend printing thinner layers with thinner nozzle diameters, and thicker layers with thicker nozzles, generally. Just note that if you do print with a thicker nozzle diameter and a very thin layer height, you’ll need to bring your extrusion settings in the slicer way down to prevent over-extrusion.

It's also worth noting, regardless of size, you'll always want to make sure you have a clean 3d printer nozzle at all times. One of the easiest ways to do this is with high quality cleaning filament. You only need to use a few grams of it each time you clean, but it'll prevent carbon build up over time. 

Another point to note, if you're printing thicker layer heights (in proportion to nozzle diameter) your overhangs will look a bit messier. In contrast to thinner layer heights, or better 3d printer layer resolution, will improve the detail on Z axis. Here's a diagram to better illustrate layer height 3d printing.

 

Layer Thickness Overhang

 

So why would I use a 0.8mm or thicker nozzle?

These were more common on older machines, but they’re making a comeback. It’s all about using what you need, and no more. For a lot of prints, the stock 0.4mm that likely came with your printer could be overkill. If you want strength and speed and detail is less important, printing on a 0.8mm or even a 1.0mm nozzle could be your answer.

This is especially important if you’re printing for business. Need to get more prints in a shorter time frame from your machine and increase profits? Switch up the nozzle size – remember a 0.8mm could reduce print times down to ¼ of a print done with a 0.4mm. The savings could be massive. And don’t forget, prints done with 0.8mm can still be impressively detailed depending on your printer.

The only slight downside could be that you use slightly more filament, but with the thicker part walls you can likely get away with lower infill to compensate.

So if you’re still wondering “What extruder size to choose?” let’s recap with the pros and cons of smaller nozzles:

  • Much finer details, providing your printer supports the additional resolution.
  • Can take significantly longer to print, but thicker nozzles can cut the time down dramatically. Spending 5 mins changing the size on longer prints could be worth the time investment!
  • Overhangs are a little more challenging to print, but supports break away more cleanly.
  • You need seriously good filament, or your nozzle could block easily. Is it worth the risk?

Hopefully this article has shed some light on the options available to you. If it has, or you have further questions related to this, please do comment below so we can help – we love to hear your thoughts or even see photos of experiences you’ve had with different nozzle sizes.

When experimenting with various nozzle sizes and rate of using filament, it may be useful to know the length of the remaining filament on the spool. We've put down a chart for various spool sizes and filament diameters for the different materials, you can find our filament length guide here

And if you need some filament you can rely on for those really intricate prints, why not order a free sample of our PLA or ABS? No seriously, it’s free with free UK shipping. You’ve got nothing to lose.

Previous Post Next Post

Love our content? Get our FREE Easy Cheat Sheet to 100% Reliable 3D Printing! - 5 Min Read

Ultimate Guide to 3D Printing
  • Save a TON of time 'tinkering'
  • Stop wasting filament (and money) on failed prints
  • Gain confidence in those longer prints
  • Advanced advice with easy explanations
  • We know you're busy - condensed in just a 5 minute read